--- title: "Description of methods for estimating Gini indexes, variance estimates and confidence intervals using **GiniVarInterval**" output: rmarkdown::html_vignette: toc: yes toc_depth: 3 number_sections: true vignette: > %\VignetteIndexEntry{GiniVarInterval} %\VignetteEncoding{UTF-8} %\VignetteEngine{knitr::rmarkdown} editor_options: markdown: wrap: 72 --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` The aim of this vignette is to describe the various methods for estimating the Gini index, for both infinite and finite populations, as well as the methods for estimating its variance, as implemented in the **giniVarCI** package. Different confidence intervals for the Gini index are also explained. To exemplify the use of the different functions, we assume that inequality is measured for a nonnegative and continuous random variable $Y$. A popular formulation of the Gini index ($G$) is defined by (see David, 1968; Kendall and Stuart, 1977; Qin et al., 2010): $$ G = \frac{1}{2 \mu_{Y}} \int_{0}^{+\infty} \int_{0}^{+\infty} |x-y|dF_{Y}(x)dF_{Y}(y), $$ where $$\mu_{Y}=E[Y]=\int_{0}^{+\infty}yf(y)dy=\int_{0}^{+\infty}ydF_{Y}(y),$$ is the mean of $Y$, and $F_{Y}(y)=P(Y\leq y)$ and $f(y)$ are the cumulative distribution function and the probability density function of $Y$, respectively. In practice, the value of $G$ is estimated by means of a sample $S$ with size $n$, which can be selected from either infinite or finite populations (Berger and Gedik Balay, 2020; Muñoz et al., 2023). # Infinite populations ## Estimators of the Gini index For infinite populations, $\{Y_{i}: i\in S\}$ denotes a sequence, with size $n$, of nonnegative random variables with the same distribution as the variable of interest $Y$. The Gini index ($G$) is estimated using the observation of individuals selected in the sample, which are denoted as $\{y_{i}: i\in S\}$. A popular estimator of the Gini index is (see Langel and Tille, 2013; Giorgi and Gigliarano, 2017; Muñoz et al., 2023): $$\widehat{G} = \displaystyle \frac{2}{\overline{y}n^2}\sum_{i \in S}iy_{(i)} - \frac{n+1}{n}, $$ where $\overline{y}=n^{-1}\sum_{i=1}^{n}y_i$, and $y_{(i)}$ are the ordered values (in non-decreasing order) of the sample observations $y_i$. This is the expression computed by the functions *iginindex()* (`method = 5`) and *igini()* when `bias.correction = FALSE`. The estimator $\widehat{G}$ can be biased for small sample sizes (Deltas, 2003). The bias corrected (*bc*) version of $\widehat{G}$ is: $$\widehat{G}^{bc} = \displaystyle \frac{2}{\overline{y}n(n-1)}\sum_{i \in S}iy_{(i)} - \frac{n+1}{n-1},$$ which corresponds to the Gini index bias correction version computed by *iginindex()* (`method = 5`) and *igini()* when `bias.correction = TRUE`. In the first example, a sample with size `n=100` is generated using the *gsample()* function from the standard logNormal distribution (`distribution = "lognormal"`) with true Gini index is $G=0.5$ (`gini = 0.5`) and the Gini index is estimated using bias correction. ```{r} library(giniVarCI) set.seed(123) y <- gsample(n = 100, gini = 0.5, distribution = "lognormal") igini(y) ``` *iginindex()* can be used to estimate the Gini index using various estimation methods and both **R** and **C++** codes. See `help(iginindex)` for a detailed description of the various estimation methods. Efficiency comparisons between both implementations and with other functions available in other packages, such as **laeken**, **DescTools**, **ineq** or **REAT**, can be made using, for instance, the function *microbenchmark()*: ```{r} #Comparing the computation time for the various estimation methods using R microbenchmark::microbenchmark( iginindex(y, method = 1, useRcpp = FALSE), iginindex(y, method = 2, useRcpp = FALSE), iginindex(y, method = 3, useRcpp = FALSE), iginindex(y, method = 4, useRcpp = FALSE), iginindex(y, method = 5, useRcpp = FALSE), iginindex(y, method = 6, useRcpp = FALSE), iginindex(y, method = 7, useRcpp = FALSE), iginindex(y, method = 8, useRcpp = FALSE), iginindex(y, method = 9, useRcpp = FALSE), iginindex(y, method = 10, useRcpp = FALSE) ) # Comparing the computation time for the various estimation methods using Rcpp microbenchmark::microbenchmark( iginindex(y, method = 1), iginindex(y, method = 2), iginindex(y, method = 3), iginindex(y, method = 4), iginindex(y, method = 5), iginindex(y, method = 6), iginindex(y, method = 7), iginindex(y, method = 8), iginindex(y, method = 9), iginindex(y, method = 10) ) ``` ```{r} # Comparing the computation time for estimates of the Gini index in various R packages. microbenchmark::microbenchmark( igini(y), laeken::gini(y), DescTools::Gini(y), ineq::Gini(y), REAT::gini(y)) ``` ## Variance estimation and confidence intervals Variance estimators and confidence intervals are described using different methods for the estimator of the non-bias corrected version of Gini index $\widehat{G}$, since as $$\widehat{G}^{bc} = \frac{n}{n-1}\widehat{G},$$ the variance estimators and confidence intervals based on $\widehat{G}^{bc}$ can be straightforwardly derived. In particular, $$\widehat{V}(\widehat{G}^{bc})=\frac{n^2}{(n-1)^2}\widehat{V}(\widehat{G}).$$ Let $[L,U]$ the lower and upper limits of a confidence interval for $G$ based on $\widehat{G}$. The confidence interval based on $\widehat{G}^{bc}$ can be computed as: $$ \left[ \frac{n}{n-1}L, \frac{n}{n-1}U\right].$$ ### Bootstrap The argument `interval = pbootstrap` in the function *igini()* returns the confidence interval for the Gini index using the percentile bootstrap method. Let $\{y_{1}^{*}(b),\ldots, y_{n}^{*}(b)\}$ be the $b$th bootstrap sample taken from the original sample $\{y_{1},\ldots, y_{n}\}$ by simple random sampling with replacement, and $\widehat{G}^{*}(b)$ denotes the estimator $\widehat{G}$ computed from the $b$th bootstrap sample, with $b=\{1,\ldots,B\}$, being $B$ the total number of bootstrap samples. For a confidence level $1-\alpha$, the percentile bootstrap confidence interval is defined as (see Qin et al., 2010): $$\left[ \widehat{G}^{*}_{(\alpha/2)}, \widehat{G}^{*}_{(1-\alpha/2)} \right],$$ where $\widehat{G}^{*}_{(a)}$ is the $a$th quantile of the bootstrapped coefficients $\widehat{G}^{*}(b)$. A variance estimator of the Gini index based on bootstrap is defined as $$\widehat{V}_{B}(\widehat{G})= \displaystyle \frac{1}{B-1}\sum_{b=1}^{B}\left(\widehat{G}^{*}(b) - \overline{G}^{*} \right)^2,$$ where $$\overline{G}^{*}=\frac{1}{B}\sum_{b=1}^{B}\widehat{G}^{*}(b).$$ ```{r} # Gini index estimation and confidence interval using 'pbootstrap', igini(y, interval = "pbootstrap") ``` `interval = "BCa"` computes the bias-corrected and accelerated bootstrap interval (Davison and Hinkley, 1997). The idea of this confidence interval is to correct for bias due to the skewness in the distribution of bootstrap estimates. The `"BCa"` confidence interval is defined as: $$\left[ \widehat{G}^{*}_{(\alpha_{1})}, \widehat{G}^{*}_{(\alpha_{2})} \right],$$ where $$\alpha_{1}=\phi\left( \widehat{Z}_{0} + \frac{\widehat{Z}_{0} + Z_{\alpha}}{1-\widehat{a} (\widehat{Z}_{0} + \widehat{Z}_{\alpha}) } \right),$$ $$\alpha_{2}=\phi\left( \widehat{Z}_{0} + \frac{\widehat{Z}_{0} + Z_{1-\alpha}}{1-\widehat{a} (\widehat{Z}_{0} + \widehat{Z}_{1-\alpha}) } \right),$$ $\phi(\cdot)$ is the cumulative distribution function of the standard Normal distribution, and $Z_{a}$ is the $a$th quantile of the standard Normal distribution. The bias-correction factor is defined as $$\widehat{Z}_{0}=\phi^{-1}\left(\#\frac{\widehat{G}^{*}(b) - \widehat{G}}{B}\right),$$ and the acceleration factor is given by $$\widehat{a}=\frac{\sum_{i \in S}\left(\overline{G} -\widehat{G}_{-i} \right)^3}{6\left\{\sum_{i \in S}\left(\overline{G} -\widehat{G}_{-i} \right)^2\right\}^{3/2}},$$ where $\widehat{G}_{-i}$ are the jackknife estimates defined in the following section, and $$\overline{G} = \frac{1}{n}\sum_{i \in S}\widehat{G}_{-i}.$$ ```{r} # Gini index estimation and confidence interval using 'Bca'. igini(y, interval = "BCa") ``` ### Jackknife The `"zjackknife"` and `"tjackknife"` methods compute the variance of the Gini index using the Ogwang Jackknife procedure (Ogwang, 2000; Langel and Tille, 2013). This variance si given by $$\widehat{V}_{J}(\widehat{G})= \displaystyle \frac{n-1}{n}\sum_{i \in S}\left(\widehat{G}_{-i}- \overline{G} \right)^2,$$ where $$\widehat{G}_{-i}=\widehat{G}+\frac{2}{\sum_{j \in S}y_j - y_{(i)} }\left[ \frac{y_{(i)} \sum_{j \in S}jy_{(j)}}{n\sum_{j \in S}y_j}+\frac{\sum_{j \in S}jy_{(j)}}{n(n-1)} - \frac{\sum_{j \in S}y_j-\sum_{j=1}^{i}y_{(j)} +iy_{(i)} }{n-1} \right]-\frac{1}{n(n-1)}, $$ with $i=\{1,\ldots,n\}$ being the jackknife estimates, i.e., $\widehat{G}_{-i}$ is the estimation of the Gini index when the unit $i$ is removed from the sample. For a confidence level $1-\alpha$, the `"zjackknife"` confidence interval is defined as $$\left[\widehat{G} - Z_{1-\alpha/2}\sqrt{\widehat{V}_{J}(\widehat{G})}, \widehat{G} + Z_{1-\alpha/2}\sqrt{\widehat{V}_{J}(\widehat{G})} \right],$$ where $Z_{1-\alpha/2}$ is the $(1-\alpha/2)$th quantile of the standard Normal distribution. ```{r} # Gini index estimation and confidence interval using 'zjackknife'. igini(y, interval = "zjackknife") ``` `"tjackknife"` sustitutes the critical value $Z_{1-\alpha/2}$ by critical values computed from the studentized bootstrap. This confidence interval is given by\ $$\left[\widehat{G} - t_{J;1-\alpha/2}^{*}\sqrt{\widehat{V}_{J}(\widehat{G})}, \widehat{G} - t_{J;\alpha/2}^{*}\sqrt{\widehat{V}_{J}(\widehat{G})} \right],$$ where $t_{J;a}^{*}$ is the $a$th quantile of the values $$ t^{*}_{J}(b)=\frac{\widehat{G}^{*}(b) - \widehat{G}}{\sqrt{\widehat{V}_{J}\left[\widehat{G}^{*}(b)\right]}}$$ computed using the bootstrap technique, where $\widehat{V}_{J}\left[\widehat{G}^{*}(b)\right]$ is the estimated Ogwang Jackknife variance of $\widehat{G}^{*}(b)$ for the $b$th bootstrap sample. ```{r} # Gini index estimation and confidence interval using 'tjackknife'. igini(y, interval = "tjackknife") ``` ### Linearization The linearization technique for variance estimation (Deville, 1999) has been applied to the following estimators of the Gini index: $$\widehat{G}^{a} = \displaystyle \frac{1}{2\overline{y}n^{2}}\sum_{i \in S}\sum_{j\in S} |y_i-y_j|$$ and $$\widehat{G}^{b} = \displaystyle \frac{2}{\overline{y}n}\sum_{i \in S}y_{i}\widehat{F}_{n}(y_{i}) - 1,$$ where $$\widehat{F}_{n}(y_i)=\frac{1}{n}\sum_{j \in S}\delta(y_j \leq y_i)$$ and $\delta(\cdot)$ is the indicator variable that takes the value 1 when its argument is true and 0 otherwise. For a given estimator $\widehat{G}$ and a linearizated variable $z$, the confidence interval, with confidence level $1-\alpha$, is defined as: $$\left[\widehat{G} - Z_{1-\alpha/2}\sqrt{\widehat{V}_{L}(\widehat{G})}, \widehat{G} + Z_{1-\alpha/2}\sqrt{\widehat{V}_{L}(\widehat{G})} \right],$$ where the variance estimator of the Gini index is given by: $$\widehat{V}_{L}(\widehat{G})= \displaystyle \frac{1}{n(n-1)}\sum_{i \in S}\left(z_{i} - \overline{z}\right)^2,$$ and $$\overline{z}=\frac{1}{n}\sum_{i \in S}z_{i}.$$ On the one hand, `interval = "zalinearization"` linearizates the estimator $\widehat{G}^{a}$, and the corresponding pseudo-values are (see Langel anf Tillé 2013): $$z_{(i)}^{a}=\frac{1}{\overline{y}}\left[ \frac{2i}{n}\left( y_{(i)} - \widehat{\overline{Y}}_{(i)}\right) + \overline{y} - y_{(i)} - \widehat{G}^{a}\left(\overline{y} + y_{(i)}\right) \right],$$ where $$\widehat{\overline{Y}}_{(i)} = \displaystyle \frac{1}{i}\sum_{j = 1}^{i}y_{(j)}.$$ On the other hand, `interval = "zblinearization"` linearizates the estimator $\widehat{G}^{b}$, and the corresponding pseudo values are (see Berger, 2008): $$z_i^{b}=\frac{1}{\overline{y}}\left[ 2y_i\widehat{F}_{n}(y_i) - (\widehat{G}^{b}+1)(y_i+\overline{y})+2\frac{\sum_{j \in S}y_j\delta(y_j \geq y_i)}{n} \right].$$ ```{r} # Gini index estimation and confidence interval using 'zalinearization'. igini(y, interval = "zalinearization") # Gini index estimation and confidence interval using 'zblinearization'. igini(y, interval = "zblinearization") ``` Intervals `"talinearization"` and `"tblinearization"` substitute the critical value $Z_{1-\alpha/2}$ by critical values computed from the Studentized bootstrap. This confidence interval is given by\ $$\left[\widehat{G} - t_{L;1-\alpha/2}^{*}\sqrt{\widehat{V}_{L}(\widehat{G})}, \widehat{G} - t_{L;\alpha/2}^{*}\sqrt{\widehat{V}_{L}(\widehat{G})} \right],$$ where $t_{L;a}^{*}$ is the $a$th quantile of the values $$ t^{*}_{L}(b)=\frac{\widehat{G}^{*}(b) - \widehat{G}}{\sqrt{\widehat{V}_{L}\left[\widehat{G}^{*}(b)\right]}}.$$ $\widehat{V}_{L}(\cdot)$ is computed using the pseudo-values $z_{(i)}^{a}$ when `interval = "zalinearization"`, and using the pseudo-values $z_i^{b}$ when `interval = "zblinearization"`. ```{r} # Gini index estimation and confidence interval using 'talinearization'. igini(y, interval = "talinearization") # Gini index estimation and confidence interval using 'tblinearization'. igini(y, interval = "tblinearization") ``` ### Empirical likelihood Intervals `"ELchisq"` and `"ELboot"` compute the empirical likelihood ($EL$) method, a nonparametric technique that provides desirable inferences under skewed distributions. The shape of the $EL$ confidence intervals are determined by the data-driven likelihood ratio function (Owen, 2001). `interval = "ELchisq"` obtains the $EL$ confidence interval, with confidence level $1-\alpha$, for the Gini index as defined by Qin et al. (2010): $$\left\{ \theta|-2R(\theta) \leq \frac{\chi^2_{1;1-\alpha}}{k}\right\}$$ where $$R(\theta)= - \sum_{i \in S} log\{1+\lambda Z(y_i,\theta)\}$$ is the log-EL ratio statistic for $\theta = G$, $$Z(y_i,\theta)=\{2\widehat{F}_{n}(y_i)-1\}y_{i} - \theta y_i,$$ $\lambda$ is the solution to $$ \frac{1}{n}\sum_{i \in S}\frac{Z(y_i,\theta)}{1+Z(y_i,\theta)}=0,$$ $k=\widehat{\sigma}_{2}^{2}/\widehat{\sigma}_{1}^{2}$ is the scaling factor, $$ \widehat{\sigma}_{j}^{2}=\frac{1}{n-1}\sum_{i \in S}\left(u_{ji} - \overline{u}_{j} \right)^2,$$ with $j=\{1,2\}$, $$ \overline{u}_{j} = \frac{1}{n}\sum_{i \in S}u_{ji},$$ and $\chi^2_{1;1-\alpha}$ is the $(1-\alpha)$th quantile of Chi-Squared distribution with one degree of freedom. ```{r} # Gini index estimation and confidence interval using 'ELchisq'. igini(y, interval = "ELchisq") ``` `interval = "ELboot"` substitutes the critical value based on the Chi-Squared distribution by an empirical critical value based on bootstrap. `"ELboot"` computes the $EL$ confidence interval (Qin et al., 2010): $$\left\{ \theta|-2R(\theta) \leq C_{1-\alpha}\right\},$$ where $C_{1-\alpha}$ is the $(1-\alpha)$th quantile of the values $\{-R_{1}^{*}(\widehat{G}),\ldots, -R_{B}^{*}(\widehat{G})\}$, and where $R_{b}^{*}(\widehat{G})$ denotes the value of $R(\theta)$ computed from the $b$th bootstrap sample. ```{r} # Gini index estimation and confidence interval using 'ELboot'. igini(y, interval = "ELboot") ``` The function *icompareCI()* compares the various confidence intervals for the scenario of a sample derived from an infinite population. The argument `plotCI = TRUE` plots the results derived from the various available methods for constructing confidence intervals. ```{r} # Comparisons of variance estimators and confidence intervals. icompareCI(y, plotCI = FALSE) ``` # Finite populations ## Estimators of the Gini index For a finite population $U$, $\{Y_{i}: i\in U\}$ denotes a sequence, with size $N$, of nonnegative random variables with the same distribution as the variable of interest $Y$, and $\{y_{i}: i\in U\}$ are the population values of the variable of interest. A sample $S$ is selected from $U$ by using a sampling design with survey weights $w_i$, with $i\in S$. For example, the survey weights can be $w_i = \pi_{i}^{-1}$, where $\pi_{i}=P(i\in S)$ are the inclusion probabilities (Muñoz et al., 2023). The Gini index ($G$) is estimated using the observations of individuals selected in the sample $\{y_{i}: i\in S\}$, and the corresponding survey weights $\{w_{i}: i\in S\}$. The different methods for estimating the Gini index are (see also Muñoz et al., 2023): - `method = 1` (Langel and Tillé, 2013). $$\widehat{G}_{w1}= \displaystyle \frac{1}{2\widehat{N}^{2}\overline{y}_{w}}\sum_{i \in S}\sum_{j \in S}w_{i}w_{j}|y_{i}-y_{j}|,$$ where $\widehat{N}=\sum_{i \in S}w_i$ and $$\overline{y}_{w}= \frac{1}{\widehat{N}}\sum_{i \in S}w_{i}y_{i}.$$ - `method = 2` (Alfons and Templ, 2012; Langel and Tillé, 2013). $$\widehat{G}_{w2} =\displaystyle \frac{2\sum_{i \in S}w_{(i)}^{+}\widehat{N}_{(i)}y_{(i)} -\sum_{i \in S}w_{i}^{2}y_{i} }{\widehat{N}^{2}\overline{y}_{w}}-1,$$ where $y_{(i)}$ are the values $y_i$ sorted in increasing order, $w_{(i)}^{+}$ are the values $w_i$ sorted according to the increasing order of the values $y_i$, and $\widehat{N}_{(i)}=\sum_{j=1}^{i}w_{(j)}^{+}$. Note that Langel and Tillé (2013) show that $\widehat{G}_{w1}=\widehat{G}_{w2}$. - `method = 3` (Berger, 2008). $$\widehat{G}_{w3} = \displaystyle \frac{2}{\widehat{N}\overline{y}_{w}}\sum_{i \in S}w_{i}y_{i}\widehat{F}_{w}^{\ast}(y_{i})-1, $$ where $$\widehat{F}_{w}^{\ast}(t) = \displaystyle \frac{1}{\widehat{N}}\sum_{i \in S}w_{i}[\delta(y_i < t) + 0.5\delta(y_i = t)]$$ is the smooth (mid-point) distribution function. - `method = 4` (Berger and Gedik-Balay, 2020). $$\widehat{G}_{w4} = 1 - \displaystyle \frac{\overline{v}_{w}}{\overline{y}_{w}},$$ where $\overline{v}_{w}=\widehat{N}^{-1}\sum_{i \in S}w_{i}v_{i}$ and $$v_{i} = \displaystyle \frac{1}{\widehat{N} - w_{i}}\sum_{ \substack{j \in S\\ j\neq i}}\min(y_{i},y_{j}).$$ - `method = 5` (Lerman and Yitzhaki, 1989). $$\widehat{G}_{w5} = \displaystyle \frac{2}{\widehat{N}\overline{y}_{w}} \sum_{i \in S} w_{(i)}^{+}[y_{(i)} - \overline{y}_{w}]\left[ \widehat{F}_{w}^{LY}(y_{(i)}) - \overline{F}_{w}^{LY} \right], $$ where $$\widehat{F}_{w}^{LY}(y_{(i)}) = \displaystyle \frac{1}{\widehat{N}}\left(\widehat{N}_{(i-1)} + \frac{w_{(i)}^{+}}{2} \right)$$ and $$\overline{F}_{w}^{LY}=\frac{1}{\widehat{N}}\sum_{i \in S}w_{(i)}^{+}\widehat{F}_{w}^{LY}(y_{(i)}).$$ In the finite population example, income and weights from the 2006 Austrian EU-SILC data set (**laeken** package) are used to estimate the Gini index in the Austrian region of Burgenland. The Gini index is estimated using *fgini()* and `method = 2` (the default method). ```{r} data(eusilc, package="laeken") y <- eusilc$eqIncome[eusilc$db040 == "Burgenland"] w <- eusilc$rb050[eusilc$db040 == "Burgenland"] fgini(y, w) ``` *fginindex()* can be used to estimate the Gini index using various estimation methods and both **R** and **C++** codes. Efficiency comparisons between both implementations and with other functions available in other packages, such as **laeken**, **DescTools**, **ineq** or **REAT**, can be made using, for example, the function *microbenchmark()*: ```{r} #Comparing the computation time for the various estimation methods and using R microbenchmark::microbenchmark( fginindex(y, w, method = 1, useRcpp = FALSE), fginindex(y, w, method = 2, useRcpp = FALSE), fginindex(y, w, method = 3, useRcpp = FALSE), fginindex(y, w, method = 4, useRcpp = FALSE), fginindex(y, w, method = 5, useRcpp = FALSE) ) # Comparing the computation time for the various estimation methods and using Rcpp microbenchmark::microbenchmark( fginindex(y, w, method = 1), fginindex(y, w, method = 2), fginindex(y, w, method = 3), fginindex(y, w, method = 4), fginindex(y, w, method = 5) ) ``` ```{r} # Comparing the computation time for estimates of the Gini index in various R packages. # Comparing 'method = 2', used also by the laeken package. microbenchmark::microbenchmark( fgini(y,w), laeken::gini(y,w) ) # Comparing 'method = 5', used also by the DescTools and REAT packages. microbenchmark::microbenchmark( fgini(y,w, method = 5), DescTools::Gini(y,w), REAT::gini(y, weighting = w) ) ``` ## Variance estimation and confidence intervals Jackknife and linearization tecniques compute *pseudo-values* (named as $z_{i}$, with $i \in S$) that require the use of an expression for the variance estimation. The function *fgini()* can compute the following type variance estimators using the argument `varformula`: 1. The Horvitz-Thompson (`"HT"`) type variance estimator (Hortvitz and Thompson, 1952). $$\widehat{V}_{HT}(\widehat{G}_{w}) = \displaystyle \sum_{i\in S}\sum_{j\in S}\breve{\Delta}_{ij}w_{i}w_{j}z_{i}z_{j},$$ which is computed when `varformula = "HT"`, where $$\breve{\Delta}_{ij}=\displaystyle \frac{\pi_{ij}-\pi_{i}\pi_{j}}{\pi_{ij}}.$$ 2. The Sen-Yates-Grundy (`"SYG"`) type variance estimator (Sen, 1953; Yates and Grundy, 1953). $$\widehat{V}_{SYG}(\widehat{G}_{w}) = - \displaystyle \frac{1}{2}\sum_{i\in S}\sum_{j\in S}\breve{\Delta}_{ij}(w_{i}z_i-w_{j}z_{j})^{2},$$ which is computed when `varformula = "SYG"`. 3. The Hartley-Rao (`"HR"`) type variance estimator (Hartley and Rao, 1962). $$\widehat{V}_{HR}(\widehat{G}_{w}) = \displaystyle \frac{1}{n-1}\sum_{i\in S}\sum_{\substack{j \in S\\ j < i}}\left(1-\pi_i-\pi_j + \frac{1}{n}\sum_{k\in U}\pi_{k}^{2} \right)(w_{i}z_i-w_{j}z_{j})^{2},$$ which is computed when `varformula = "HR"`. Note that the `"HT"` variance estimator may give negative values, and the `"SYG"` variance estimator is suitable for fixed-size sampling designs. This implies that `"SYG"` should not be used under Poisson sampling. Fortunately, `"HT"` always give positive values under this sampling design. We observe that both Horvitz-Thompson and Sen-Yates-Grundy variance estimators depend on second (joint) inclusion probabilities (argument `Pij`). The Hàjek (1964) approximation $$\pi_{ij}\cong \pi_{i}\pi_{j}\left[1- \displaystyle \frac{(1-\pi_{i})(1-\pi_{j})}{\sum_{i \in S}(1-\pi_{i})} \right]$$ is used when the second (joint) inclusion probabilities are not available (`Pij = NULL`). Note that the Hàjek approximation is suggested for large-entropy sampling designs, large samples, and large populations (see Tille 2006; Berger and Tille, 2009; Haziza et al., 2008; Berger, 2011). For instance, this approximation is not recomended for highly-stratified samples (Berger, 2005). The Hartley-Rao variance estimator requires the first inclusion probabilities at the population level (argument `PiU`). ### Bootstrap For complex sampling designs, the rescaled bootstrap (Rao el al., 1992; Rust and Rao, 1996) can be used for variance estimation and construction of confidence intervals. `interval = "pbootstrap"` returns the confidence interval for the Gini index using the rescaled bootstrap with confidence limits obtained by the percentile method. For a given estimator $\widehat{G}_{w}$ and a confidence level $1-\alpha$, this confidence interval is given by $$\left[ \widehat{G}^{*}_{w;\alpha/2}, \widehat{G}^{*}_{w;1-\alpha/2} \right],$$ where $\widehat{G}^{*}_{w;a}$ is the $a$th quantile of the bootstrapped coefficients $\widehat{G}^{*}_{w}(b)$, with $b=\{1,\ldots,B\}$, and which are obtained by using the expression $\widehat{G}_{w}$ after substituting the original survey weights $w_{i}$ by the bootstrap weights $$w_{i}^{*}(b)=w_{i}\frac{r_{i}n}{n-1},$$ where $r_{i}$ is the number of times that $i$yh unit is selected by the bootstrap procedure. A variance estimator of the Gini index based on the rescaled bootstrap is defined as: $$\widehat{V}_{B}(\widehat{G}_{w})= \displaystyle \frac{1}{B-1}\sum_{b=1}^{B}\left(\widehat{G}^{*}_{w}(b) - \overline{G}^{*}_{w} \right)^2,$$ where $$\overline{G}^{*}_{w}=\frac{1}{B}\sum_{b=1}^{B}\widehat{G}^{*}_{w}(b).$$ ```{r} # Gini index estimation and confidence interval using 'pbootstrap'. fgini(y, w, interval = "pbootstrap") ``` ### Jackknife The `"zjackknife"` method computes the variance of the Gini index using the jackknife technique. For a given estimator $\widehat{G}_{w}$, the pseudo-values for variance estimation are defined as (see Berger, 2008): $$z_{i}=\displaystyle \frac{1}{w_{i}}\left(1-\frac{w_{i}}{\widehat{N}}\right)\left(\widehat{G}_{w} - \widehat{G}_{w;-i}\right),$$ where $\widehat{G}_{w;-i}$ denotes the estimator $\widehat{G}_{w}$ computed from $S\setminus\{i\}$, i.e., from the sample $S$ after removing the $i$th unit. For a confidence level $1-\alpha$, the `"zjackknife"` confidence interval is defined as $$\left[\widehat{G}_{w} - Z_{1-\alpha/2}\sqrt{\widehat{V}(\widehat{G}_{w})}, \widehat{G}_{w} + Z_{1-\alpha/2}\sqrt{\widehat{V}(\widehat{G}_{w})} \right],$$ where the variance $\widehat{V}(\widehat{G}_{w})$ is computed using the pseudo-values $z_i$ and any of the aforementioned type variance estimators (Horvitz-Thompson; Sen-Yates-Grundy; or Harley-Rao). ```{r} # Gini index estimation and confidence interval using 'zjackknife'. fgini(y, w, interval = "zjackknife") ``` ### Linearization The linearization technique for variance estimation (Deville, 1999) has been applied to the following estimators of the Gini index: $$\widehat{G}_{w}^{a}= \displaystyle \frac{1}{2\widehat{N}^{2}\overline{y}_{w}}\sum_{i \in S}\sum_{j \in S}w_{i}w_{j}|y_{i}-y_{j}|,$$ and $$\widehat{G}_{w}^{b} = \displaystyle \frac{2}{\widehat{N}\overline{y}_{w}}\sum_{i \in S}w_{i}y_{i}\widehat{F}_{w}(y_{i})-1, $$ where $$\widehat{F}_{w}(t)=\frac{1}{\widehat{N}}\sum_{i \in S}w_i\delta(y_i \leq t)$$ For a given estimator $\widehat{G}_w$ and a linearizated variable $z$, the confidence interval, with confidence level $1-\alpha$, is defined as $$\left[\widehat{G}_w - Z_{1-\alpha/2}\sqrt{\widehat{V}(\widehat{G}_w)}, \widehat{G}_w + Z_{1-\alpha/2}\sqrt{\widehat{V}(\widehat{G}_w)} \right],$$ where the variance $\widehat{V}(\widehat{G}_w)$ is computed using the corresponding pseudo-values and any of the aforementioned type variance estimators (Horvitz-Thompson; Sen-Yates-Grundy, or Harley-Rao). On the one hand, `interval = "zalinearization"` linearizates the estimator $\widehat{G}_{w}^{a}$, and the corresponding pseudo-values are defined as (Langel anf Tillé 2013): $$z_{(i)}^{a}=\frac{1}{\widehat{N}^{2}\overline{y}_w}\left[ 2\widehat{N}_{(i)}\left( y_{(i)} - \widehat{\overline{Y}}_{(i)}\right) + \widehat{N}\left\{ \overline{y}_{w} - y_{(i)} - \widehat{G}_{w}^{a}\left(\overline{y}_{w} + y_{(i)} \right) \right\} \right],$$ where $$\widehat{\overline{Y}}_{(i)} = \displaystyle \frac{1}{\widehat{N}_{(i)}}\sum_{j=1}^{i}w_{(j)}^{+}y_{(j)}.$$ On the other hand, `interval = "zblinearization"` linearizates the estimator $\widehat{G}_{w}^{b}$, and the corresponding pseudo values are (see Berger, 2008): $$z_i^{b}=\frac{1}{\hat{N}\overline{y}_{w}}\left[ 2y_i\widehat{F}_{w}(y_i) - (\widehat{G}_{w}^{b}+1)(y_i+\overline{y}_{w})+\frac{2}{\hat{N}}\sum_{j \in S}w_jy_j\delta(y_j \geq y_i) \right],$$ where $$\widehat{F}_{w}(t) = \displaystyle \frac{1}{\widehat{N}}\sum_{i \in S}w_{i}\delta(y_i \leq t).$$ ```{r} # Gini index estimation and confidence interval using: ## a: The method 2 for point estimation. ## b: The method 'zalinearization' for variance estimation. ## c: The Sen-Yates-Grundy type variance estimator. ## d: The Hàjek approximation for the joint inclusion probabilities. fgini(y, w, interval = "zalinearization") # Gini index estimation and confidence interval using: ## a: The method 3 for point estimation. ## b: The method 'zblinearization' for variance estimation. ## c: The Sen-Yates-Grundy type variance estimator. ## d: The Hàjek approximation for the joint inclusion probabilities. fgini(y, w, method = 3, interval = "zblinearization") ``` # References Alfons, A., and Templ, M. (2012). Estimation of social exclusion indicators from complex surveys: The R package laeken. KU Leuven, Faculty of Business and Economics Working Paper. Berger, Y. G. (2005). Variance estimation with highly stratified sampling designs with unequal probabilities. *Australian & New Zealand Journal of Statistics*, 47, 365–373. Berger, Y. G. (2008). A note on the asymptotic equivalence of jackknife and linearization variance estimation for the Gini Coefficient. *Journal of Official Statistics*, 24(4), 541-555. Berger, Y. G. (2011). Asymptotic consistency under large entropy sampling designs with unequal probabilities. *Pakistan Journal of Statistics*, 27, 407–426. Berger, Y. G. and Tille, Y. (2009). Sampling with unequal probabilities. In Sample Surveys: Design, Methods and Applications (eds. D. Pfeffermann and C. R. Rao), 39–54. Elsevier, Amsterdam Berger, Y., and Gedik Balay, İ. (2020). Confidence intervals of Gini coefficient under unequal probability sampling. *Journal of Official Statistics*, 36(2), 237-249. David, H.A. (1968). Gini's mean difference rediscovered. *Biometrika*, 55, 573--575. Davison, A. C., and Hinkley, D. V. (1997). *Bootstrap Methods and Their Application* (Cambridge Series in Statistical and Probabilistic Mathematics, No 1)--Cambridge University Press. Deville, J.C. (1999). Variance Estimation for Complex Statistics and Estimators: Linearization and Residual Techniques. *Survey Methodology*, 25, 193--203. Deltas, G. (2003). The small-sample bias of the Gini coefficient: results and implications for empirical research. *Review of Economics and Statistics*, 85(1), 226-234. Giorgi, G. M., and Gigliarano, C. (2017). The Gini concentration index: a review of the inference literature. *Journal of Economic Surveys*, 31(4), 1130-1148. Hàjek, J. (1964). Asymptotic theory of rejective sampling with varying probabilities from a finite population. *The Annals of Mathematical Statistics*, 35, 4, 1491–1523. Hartley, H. O., and Rao, J. N. K. (1962). Sampling with unequal probabilities and without replacement. *The Annals of Mathematical Statistics*, 350-374. Haziza, D., Mecatti, F. and Rao, J. N. K. (2008). Evaluation of some approximate variance estimators under the Rao-Sampford unequal probability sampling design. *Metron*, LXVI, 91–108. Horvitz, D. G. and Thompson, D. J. (1952). A generalization of sampling without replacement from a finite universe. *Journal of the American Statistical Association*, 47, 663–685. Kendall, M., and Stuart, A. (1977). *The advanced theory of statistics. Vol. 1: Distribution Theory*. London: Griffin. Langel, M., and Tillé, Y. (2013). Variance estimation of the Gini index: revisiting a result several times published. *Journal of the Royal Statistical Society: Series A (Statistics in Society)*, 176(2), 521-540. Lerman, R. I., and Yitzhaki, S. (1989). Improving the accuracy of estimates of Gini coefficients. *Journal of econometrics*, 42(1), 43-47. Muñoz, J. F., Moya-Fernández, P. J., and Álvarez-Verdejo, E. (2023). Exploring and Correcting the Bias in the Estimation of the Gini Measure of Inequality. *Sociological Methods & Research*. Ogwang, T. (2000). A convenient method of computing the Gini index and its standard error. *Oxford Bulletin of Economics and Statistics*, 62(1), 123-123. Owen, A. B. (2001). *Empirical likelihood*. CRC press. Qin, Y., Rao, J. N. K., and Wu, C. (2010). Empirical likelihood confidence intervals for the Gini measure of income inequality. *Economic Modelling*, 27(6), 1429-1435. Rao, J. N. K., Wu, C. F. J., and Yue, K. (1992). Some recent work on resampling methods for complex surveys. *Survey methodology*, 18(2), 209-217. Rust, K. F., and Rao, J. N. K. (1996). Variance estimation for complex surveys using replication techniques. *Statistical methods in medical research*, 5(3), 283-310. Sen, A. R. (1953). On the estimate of the variance in sampling with varying probabilities. *Journal of the Indian Society of Agricultural Statistics*, 5, 119–127. Tillé, Y. (2006). *Sampling Algorithms*. Springer, New York. Yates, F., and Grundy, P. M. (1953). Selection without replacement from within strata with probability proportional to size. *Journal of the Royal Statistical Society B*, 15, 253–261.